Micro-TiO₂ coated glass surfaces safely abate drugs in surface water

G. Cerrato⁠a,d,⁎, C.L. Bianchi⁠b,d, F. Galli⁠b,d, C. Pirola⁠b,d, S. Morandi⁠a,d, V. Capucci⁠c

⁎ Corresponding author at: Università degli Studi di Torino, Dip. Chimica & NIS Interdept. Centre, via P. Giuria 7, 10125 Torino, Italy.
E-mail address: giuseppina.cerrato@unito.it (G. Cerrato).

ARTICLE INFO

Keywords: Ibuprofen degradation Wastewaters Continuous reactor Supported catalyst Kronos 1077 Micrometric sample

ABSTRACT

The ingredients of Pharmaceuticals and Personal Care Products (PPCPs) persist in water and conventional treatment plants are not able to remove them efficiently. Sonochemical treatment is insufficient to mineralize organics such as ibuprofen into CO₂ and H₂O. TiO₂ degrades ibuprofen (IBP) under UV light; however, it does not reach a high grade of conversion. Here, we investigated the mineralization of ibuprofen to CO₂ by TiO₂ UV-C photocatalysis. We replaced nano-sized P25 (the standard catalyst) with a micro-sized commercial sample of TiO₂ to preclude the use of nanoparticles which are dangerous for human health and because typical filtration systems are expensive and inefficient. We deposited micro-TiO₂ on glass Raschig rings to ensure an easy recovery and reuse of the photocatalyst and we studied its performance both with a batch and a continuous reactor. Micro-TiO₂ mineralized 100% of IBP in 24 h. TiO₂-coated glass Raschig rings degraded 87% of IBP in 6 h of UV-C irradiation in a continuous reactor, with a mineralization of 25%. Electrospray ionization mass spectrometer (ESI-MS, positive mode) analyses identified 13 different byproducts and we hypothesized a degradation pathway for IBP degradation.

1. Introduction

Industries at large produce waste that pollutes bodies of water [1,2]. These emerging contaminants are persistent [3] and untreatable with conventional water treatment plants (WTPs) [4]. Pharmaceuticals and Personal Care Products (PPCPs) account for the majority of these contaminants. They retain their concentration and structure or are converted into other compounds in aquatic matrices [5]. PPCPs