Simultaneous photodegradation of VOC mixture by TiO2 powders

Marta Stucchia, Federico Galli, Claudia L. Bianchi, Carlo Pirola, Daria C. Boffito, Franco Biasiol, Valentino Capucci

Polytechnique Montreal, Department of Chemical Engineering, 2900 Edouard Montpetit Blvd, H3C 3A4 Montreal (QC), Canada

University of Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy

Research & Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele a/A, Italy

GranitiFiandre SpA, Via Chiarola Nuova 119, 42014 Castellarano, Italy

ABSTRACT

Volatile and semi volatile organic compounds’ concentration have dramatically increased in indoor environments in recent years. UV light promotes titanium dioxide, which oxidises various molecules; however, most of the studies report the degradation of a single VOC. Here, we investigate the photo-oxidation of 17 molecules in mixture to have a realistic test of TiO2 efficacy. We compare P25, a nanometric catalyst, and 1077, a micrometric sample, that poses less health concerns. A proton-transfer-reaction mass spectrometer measured online the concentration of all the pollutants simultaneously. Aldehydes compete for the adsorption on both the catalyst’s active sites and thus they degrade 70% and 55% with P25 and 1077 respectively. Considering the single pollutant oxidation, instead, aldehydes fully oxidize. Even though benzene is recalcitrant to degradation, P25 and 1077 reduced toluene’s concentration to 97% and 96% in 55 min, respectively. Acetonitrile is refractory to photocatalysis.

1. Introduction

European Environmental Agency estimated that Europeans spend 90% of their time indoor (European Environment Agency, 2013). Americans and Canadians spend 87% of time indoors and an additional 6% in a vehicle (Klepeis et al., 2001).